首页

欢迎

 

Welcome

欢迎来到这里, 这是一个学习数学、讨论数学的网站.

转到问题

请输入问题号, 例如: 2512

IMAGINE, THINK, and DO
How to be a scientist, mathematician and an engineer, all in one?
--- S. Muthu Muthukrishnan

Local Notes

Local Notes 是一款 Windows 下的笔记系统.

Local Notes 下载

Sowya

Sowya 是一款运行于 Windows 下的计算软件.

详情

下载 Sowya.7z (包含最新版的 Sowya.exe and SowyaApp.exe)


注: 自 v0.550 开始, Calculator 更名为 Sowya. [Sowya] 是吴语中数学的发音, 可在 cn.bing.com/translator 中输入 Sowya, 听其英语发音或法语发音.





注册

欢迎注册, 您的参与将会促进数学交流. 注册

在注册之前, 或许您想先试用一下. 测试帐号: usertest 密码: usertest. 请不要更改密码.


我制作的 slides

Problem

随机显示问题

Problèmes d'affichage aléatoires

计算数学 >> 离散数学 >> 图论
Questions in category: 图论 (Graph Theory).

Hamiltonian Weight Conjecture

Posted by haifeng on 2011-08-09 08:37:06 last update 2019-04-25 18:01:02 | Answers (0)


http://www.math.uiuc.edu/~west/openp/cqhamwt.html

 

Zhang's Hamiltonian Weight Conjecture

Originator(s): Cun-Quan Zhang, West Virginia University

Conjecture/Question: Every 3-connected 3-regular graph having a Hamiltonian weight arises from K4 by a sequence of Delta-Wye operations.

Definitions/Background/motivation: A Hamiltonian weight on G is a map f from E(G) to {1,2} such that every family of cycles that covers each edge e exactly f(e) times consists of two Hamiltonian cycles. A Delta-Wye operation replaces a triangle in a 3-regular graph with a single vertex incident to the three edges that emanated from the triangle.

The study of Hamiltonian weights is motivated by the cycle double cover conjecture of Szekeres and Seymour and by the unique edge-3-coloring conjecture of Fiorini and Wilson.

Partial results: The conjecture was proved in [1] for those graphs not having the Petersen graph as a minor.

References:
[1] Lai, Hong-Jian; Zhang, Cun-Quan. Hamilton weights and Petersen minors. J. Graph Theory 38 (2001), no. 4, 197--219; MR2002g:05120 05C45 (05C70)